2. Home glucose monitoring using either a visually read test or a digital readout of the glucose concentration in a drop of blood. Patients can usually learn to use the necessary equipment and perform finger sticks. They keep a daily record of findings and are taught to adjust insulin dosage accordingly. More recent glucose monitoring devices can draw blood from other locations on the body, such as the forearm.

During digestion, pancreatic beta cells release not only insulin, but in a much smaller amount, the hormone amylin, which helps mediate sharp rises in blood glucose levels following meals. Pramlintide (Symlin) is a new, synthetic form of amylin that may help improve blood glucose control for some type 1 and type 2 diabetic people who use insulin. Pramlintide has few side effects (nausea is the main one) but it adds another set of injections to a diabetic person's daily pharmaceutical routine, as it cannot be mixed in the same syringe with insulin.
Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.
Insulin Therapy. Exogenous insulin is given to patients with diabetes mellitus as a supplement to the insufficient amount of endogenous insulin that they produce. In some cases, this must make up for an absolute lack of insulin from the pancreas. Exogenous insulin is available in various types. It must be given by injection, usually subcutaneously, and because it is a potent drug, the dosage must be measured meticulously. Commonly, regular insulin, which is a fast-acting insulin with a short span of action, is mixed with one of the longer-acting insulins and both types are administered in one injection.
^ Cheng J, Zhang W, Zhang X, Han F, Li X, He X, Li Q, Chen J (May 2014). "Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis". JAMA Internal Medicine. 174 (5): 773–85. doi:10.1001/jamainternmed.2014.348. PMID 24687000.
Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.
^ Cheng J, Zhang W, Zhang X, Han F, Li X, He X, Li Q, Chen J (May 2014). "Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis". JAMA Internal Medicine. 174 (5): 773–85. doi:10.1001/jamainternmed.2014.348. PMID 24687000.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells, whereas others increase insulin resistance (especially glucocorticoids which can provoke "steroid diabetes"). The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[57]

This test measures the changes in body weight, urine output, and urine composition when fluids are withheld to induce dehydration. The body's normal response to dehydration is to conserve water by concentrating the urine. Those with DI continue to urinate large amounts of dilute urine in spite of water deprivation. In primary polydipsia, the urine osmolality should increase and stabilize at above 280 mOsm/kg with fluid restriction, while a stabilization at a lower level indicates diabetes insipidus.[10] Stabilization in this test means, more specifically, when the increase in urine osmolality is less than 30 Osm/kg per hour for at least three hours.[10] Sometimes measuring blood levels of ADH toward the end of this test is also necessary, but is more time consuming to perform.[10]


The primary complications of diabetes due to damage in small blood vessels include damage to the eyes, kidneys, and nerves.[32] Damage to the eyes, known as diabetic retinopathy, is caused by damage to the blood vessels in the retina of the eye, and can result in gradual vision loss and eventual blindness.[32] Diabetes also increases the risk of having glaucoma, cataracts, and other eye problems. It is recommended that diabetics visit an eye doctor once a year.[33] Damage to the kidneys, known as diabetic nephropathy, can lead to tissue scarring, urine protein loss, and eventually chronic kidney disease, sometimes requiring dialysis or kidney transplantation.[32] Damage to the nerves of the body, known as diabetic neuropathy, is the most common complication of diabetes.[32] The symptoms can include numbness, tingling, pain, and altered pain sensation, which can lead to damage to the skin. Diabetes-related foot problems (such as diabetic foot ulcers) may occur, and can be difficult to treat, occasionally requiring amputation. Additionally, proximal diabetic neuropathy causes painful muscle atrophy and weakness.
A person's body regulates fluid by balancing liquid intake and removing extra fluid. Thirst usually controls a person’s rate of liquid intake, while urination removes most fluid, although people also lose fluid through sweating, breathing, or diarrhea. The hormone vasopressin, also called antidiuretic hormone, controls the fluid removal rate through urination. The hypothalamus, a small gland located at the base of the brain, produces vasopressin. The nearby pituitary gland stores the vasopressin and releases it into the bloodstream when the body has a low fluid level. Vasopressin signals the kidneys to absorb less fluid from the bloodstream, resulting in less urine. When the body has extra fluid, the pituitary gland releases smaller amounts of vasopressin, and sometimes none, so the kidneys remove more fluid from the bloodstream and produce more urine.
Purified human insulin is most commonly used, however, insulin from beef and pork sources also are available. Insulin may be given as an injection of a single dose of one type of insulin once a day. Different types of insulin can be mixed and given in one dose or split into two or more doses during a day. Patients who require multiple injections over the course of a day may be able to use an insulin pump that administers small doses of insulin on demand. The small battery-operated pump is worn outside the body and is connected to a needle that is inserted into the abdomen. Pumps can be programmed to inject small doses of insulin at various times during the day, or the patient may be able to adjust the insulin doses to coincide with meals and exercise.
Diabetes insipidus is also associated with some serious diseases of pregnancy, including pre-eclampsia, HELLP syndrome and acute fatty liver of pregnancy. These cause DI by impairing hepatic clearance of circulating vasopressinase. It is important to consider these diseases if a woman presents with diabetes insipidus in pregnancy, because their treatments require delivery of the baby before the disease will improve. Failure to treat these diseases promptly can lead to maternal or perinatal mortality.

About Diabetes, Type 2:  Type 2 diabetes is characterized by "insulin resistance" as body cells do not respond appropriately when insulin is present. This is a more complex problem than type 1, but is sometimes easier to treat, since insulin is still produced, especially in the initial years. Type 2 may go unnoticed for years in a patient before diagnosis, since the symptoms are typically milder (no ketoacidosis) and can be sporadic. However, severe complications can result from unnoticed type 2 diabetes, including renal failure, and coronary artery disease. Type 2 diabetes was formerly known by a variety of partially misleading names, including "adult-onset diabetes", "obesity-related diabetes", "insulin-resistant diabetes", or "non-insulin-dependent diabetes" (NIDDM). It may be caused by a number of diseases, such as hemochromatosis and polycystic ovary syndrome, and can also be caused by certain types of medications (e.g. long-term steroid use). About 90-95% of all North American cases of diabetes are type 2, and about 20% of the population over the age of 65 is a type 2 diabetic. The fraction of type 2 diabetics in other parts of the world varies substantially, almost certainly for environmental and lifestyle reasons. There is also a strong inheritable genetic connection in type 2 diabetes: having relatives (especially first degree) with type 2 is a considerable risk factor for developing type 2 diabetes. The majority of patients with type 2 diabetes mellitus are obese - chronic obesity leads to increased insulin resistance that can develop into diabetes, most likely because adipose tissue is a (recently identified) source of chemical signals (hormones and cytokines).


Every cell in the human body needs energy in order to function. The body's primary energy source is glucose, a simple sugar resulting from the digestion of foods containing carbohydrates (sugars and starches). Glucose from the digested food circulates in the blood as a ready energy source for any cells that need it. Insulin is a hormone or chemical produced by cells in the pancreas, an organ located behind the stomach. Insulin bonds to a receptor site on the outside of cell and acts like a key to open a doorway into the cell through which glucose can enter. Some of the glucose can be converted to concentrated energy sources like glycogen or fatty acids and saved for later use. When there is not enough insulin produced or when the doorway no longer recognizes the insulin key, glucose stays in the blood rather entering the cells.
Hypoglycemic reactions are promptly treated by giving carbohydrates (orange juice, hard candy, honey, or any sugary food); if necessary, subcutaneous or intramuscular glucagon or intravenous dextrose (if the patient is not conscious) is administered. Hyperglycemic crises are treated initially with prescribed intravenous fluids and insulin and later with potassium replacement based on laboratory values.

An organ in the abdomen called the pancreas produces a hormone called insulin, which is essential to helping glucose get into the body's cells. In a person without diabetes, the pancreas produces more insulin whenever blood levels of glucose rise (for example, after a meal), and the insulin signals the body's cells to take in the glucose. In diabetes, either the pancreas's ability to produce insulin or the cells' response to insulin is altered.
diabetes mel´litus a broadly applied term used to denote a complex group of syndromes that have in common a disturbance in the oxidation and utilization of glucose, which may be secondary to a malfunction of the beta cells of the pancreas, whose function is the production and release of insulin. Because insulin is involved in the metabolism of carbohydrates, proteins, and fats, diabetes is not limited to a disturbance of glucose homeostasis alone. Insulin resistance may also sometimes play a role in the etiology of diabetes. 
Insulin Therapy. Exogenous insulin is given to patients with diabetes mellitus as a supplement to the insufficient amount of endogenous insulin that they produce. In some cases, this must make up for an absolute lack of insulin from the pancreas. Exogenous insulin is available in various types. It must be given by injection, usually subcutaneously, and because it is a potent drug, the dosage must be measured meticulously. Commonly, regular insulin, which is a fast-acting insulin with a short span of action, is mixed with one of the longer-acting insulins and both types are administered in one injection.
To distinguish between the main forms, desmopressin stimulation is also used; desmopressin can be taken by injection, a nasal spray, or a tablet. While taking desmopressin, a person should drink fluids or water only when thirsty and not at other times, as this can lead to sudden fluid accumulation in the central nervous system. If desmopressin reduces urine output and increases urine osmolarity, the hypothalamic production of ADH is deficient, and the kidney responds normally to exogenous vasopressin (desmopressin). If the DI is due to kidney pathology, desmopressin does not change either urine output or osmolarity (since the endogenous vasopressin levels are already high).[medical citation needed]
The main effector organ for fluid homeostasis is the kidney. ADH acts by increasing water permeability in the collecting ducts and distal convoluted tubules; specifically, it acts on proteins called aquaporins and more specifically aquaporin 2 in the following cascade. When released, ADH binds to V2 G-protein coupled receptors within the distal convoluted tubules, increasing cyclic AMP, which couples with protein kinase A, stimulating translocation of the aquaporin 2 channel stored in the cytoplasm of the distal convoluted tubules and collecting ducts into the apical membrane. These transcribed channels allow water into the collecting duct cells. The increase in permeability allows for reabsorption of water into the bloodstream, thus concentrating the urine.
×