ORAL GLUCOSE TOLERANCE TEST. Blood samples are taken from a vein before and after a patient drinks a thick, sweet syrup of glucose and other sugars. In a non-diabetic, the level of glucose in the blood goes up immediately after the drink and then decreases gradually as insulin is used by the body to metabolize, or absorb, the sugar. In a diabetic, the glucose in the blood goes up and stays high after drinking the sweetened liquid. A plasma glucose level of 11.1 mmol/L (200 mg/dL) or higher at two hours after drinking the syrup and at one other point during the two-hour test period confirms the diagnosis of diabetes.
There are four types of DI, each with a different set of causes.[1] Central DI (CDI) is due to a lack of the hormone vasopressin (antidiuretic hormone).[1] This can be due to injury to the hypothalamus or pituitary gland or genetics.[1] Nephrogenic DI (NDI) occurs when the kidneys do not respond properly to vasopressin.[1] Dipsogenic DI is a result of excessive fluid intake due to damage to the hypothalamic thirst mechanism.[1] It occurs more often in those with certain psychiatric disorders or on certain medications.[1] Gestational DI occurs only during pregnancy.[1] Diagnosis is often based on urine tests, blood tests and the fluid deprivation test.[1] Diabetes mellitus is a separate condition with an unrelated mechanism, though both can result in the production of large amounts of urine.[1]

Diabetes insipidus is a rare disorder that occurs when a person's kidneys pass an abnormally large volume of urine that is insipid—dilute and odorless. In most people, the kidneys pass about 1 to 2 quarts of urine a day. In people with diabetes insipidus, the kidneys can pass 3 to 20 quarts of urine a day. As a result, a person with diabetes insipidus may feel the need to drink large amounts of liquids.
Another form of diabetes called gestational diabetes can develop during pregnancy and generally resolves after the baby is delivered. This diabetic condition develops during the second or third trimester of pregnancy in about 2% of pregnancies. In 2004, incidence of gestational diabetes were reported to have increased 35% in 10 years. Children of women with gestational diabetes are more likely to be born prematurely, have hypoglycemia, or have severe jaundice at birth. The condition usually is treated by diet, however, insulin injections may be required. These women who have diabetes during pregnancy are at higher risk for developing Type II diabetes within 5-10 years.

A metabolic disease in which carbohydrate use is reduced and that of lipid and protein enhanced; it is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma; long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.


The relationship between type 2 diabetes and the main modifiable risk factors (excess weight, unhealthy diet, physical inactivity and tobacco use) is similar in all regions of the world. There is growing evidence that the underlying determinants of diabetes are a reflection of the major forces driving social, economic and cultural change: globalization, urbanization, population aging, and the general health policy environment.[77]
Fatigue and muscle weakness occur because the glucose needed for energy simply is not metabolized properly. Weight loss in type 1 diabetes patients occurs partly because of the loss of body fluid and partly because in the absence of sufficient insulin the body begins to metabolize its own proteins and stored fat. The oxidation of fats is incomplete, however, and the fatty acids are converted into ketone bodies. When the kidney is no longer able to handle the excess ketones the patient develops ketosis. The overwhelming presence of the strong organic acids in the blood lowers the pH and leads to severe and potentially fatal ketoacidosis.
When an adult is diagnosed with diabetes, they are often mistakenly told that they have type 2 diabetes. This is because there is still a lack of an understanding in the medical community that type 1 diabetes can start at any age. It can also be tricky because some adults with new-onset type 1 diabetes are often not sick at first. Their doctor finds an elevated blood sugar level at a routine visit and starts them on diet, exercise and an oral medication. On the other hand, there are people who look like they have type 2 diabetes—they may be Latino or African American and/or overweight, but they have type 1 diabetes after all. This can be difficult for even the brightest doctor to diagnose. 
The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.
Type 1 diabetes can occur at any age, and a significant proportion is diagnosed during adulthood. Latent autoimmune diabetes of adults (LADA) is the diagnostic term applied when type 1 diabetes develops in adults; it has a slower onset than the same condition in children. Given this difference, some use the unofficial term "type 1.5 diabetes" for this condition. Adults with LADA are frequently initially misdiagnosed as having type 2 diabetes, based on age rather than cause[46]
Incidence and Prevalence. It has been estimated that slightly over 6 per cent of the population is affected by some form of diabetes, or 17 million people in the USA and 1.2 to 1.4 million in Canada; many of these individuals are not diagnosed. Diabetes is ranked third as a cause of death, although the life span of patients with diabetes has increased due to improved methods of detection and better management. There is no cure for diabetes at the present time, but enormous strides have been made in the control of the disease. The patient must understand the importance of compliance with the entire treatment plan, including diet, exercise, and in some cases medication. The patient with diabetes is at increased risk for cardiovascular disease, renal failure, neuropathies, and diabetic retinopathy. Research studies such as the Diabetes Control and Complications Trial have indicated that tight control of blood glucose levels resulted in the delay or prevention of retinopathy, nephropathy, and neuropathy.

Metformin is generally recommended as a first line treatment for type 2 diabetes, as there is good evidence that it decreases mortality.[7] It works by decreasing the liver's production of glucose.[90] Several other groups of drugs, mostly given by mouth, may also decrease blood sugar in type II DM. These include agents that increase insulin release, agents that decrease absorption of sugar from the intestines, agents that make the body more sensitive to insulin, and agents that increase the excretion of glucose in the urine.[90] When insulin is used in type 2 diabetes, a long-acting formulation is usually added initially, while continuing oral medications.[7] Doses of insulin are then increased to effect.[7][91]
A. Diabetes is the inability of the body to ‘produce insulin - type 1 diabetes’ or ‘proper use of insulin - type 2 diabetes, gestational diabetes and pre-diabetes’. Diabetes is often goes undiagnosed because many of the symptoms of diabetes seems harmless. The causes of diabetes continues to be a mystery, pancreas it the organ whose defect causes diabetes.

Can diabetes be prevented? Why are so many people suffering from it now over decades past? While there will never be anyway to possibly avoid genetic diabetes, there have been cases where dietary changes could perhaps have been made to delay or prevent the ailment from further developing. Doctors report that obesity plays a role, as well as activity levels, and even overall mental health often can be common threads of pre-diabetic patients.
The Diabetes Control and Complications Trial (DCCT) was a clinical study conducted by the United States National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) that was published in the New England Journal of Medicine in 1993. Test subjects all had type 1 diabetes and were randomized to a tight glycemic arm and a control arm with the standard of care at the time; people were followed for an average of seven years, and people in the treatment had dramatically lower rates of diabetic complications. It was as a landmark study at the time, and significantly changed the management of all forms of diabetes.[89][133][134]
Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans in the pancreas, in response to rising levels of blood glucose, typically after eating. Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Lower glucose levels result in decreased insulin release from the beta cells and in the breakdown of glycogen to glucose. This process is mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin.[63]

Another dipstick test can determine the presence of protein or albumin in the urine. Protein in the urine can indicate problems with kidney function and can be used to track the development of renal failure. A more sensitive test for urine protein uses radioactively tagged chemicals to detect microalbuminuria, small amounts of protein in the urine, that may not show up on dipstick tests.


Persons with diabetes are prone to infection, delayed healing, and vascular disease. The ease with which poorly controlled diabetic persons develop an infection is thought to be due in part to decreased chemotaxis of leukocytes, abnormal phagocyte function, and diminished blood supply because of atherosclerotic changes in the blood vessels. An impaired blood supply means a deficit in the protective defensive cells transported in the blood. Excessive glucose allows organisms to grow out of control.

The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.


Purified human insulin is most commonly used, however, insulin from beef and pork sources also are available. Insulin may be given as an injection of a single dose of one type of insulin once a day. Different types of insulin can be mixed and given in one dose or split into two or more doses during a day. Patients who require multiple injections over the course of a day may be able to use an insulin pump that administers small doses of insulin on demand. The small battery-operated pump is worn outside the body and is connected to a needle that is inserted into the abdomen. Pumps can be programmed to inject small doses of insulin at various times during the day, or the patient may be able to adjust the insulin doses to coincide with meals and exercise.

You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
×